skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Qiang Zhong, Yicong Fu"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Undulatory fin motions in fish-like robots are typically created using intricate arrays of servo motors. Motor arrays offer impressive versatility in terms of kinematics, but their complexity leads to constraints on size, hydrodynamic force production, and power consumption, particularly when studying propulsive performance at high-frequencies. Here we present an alternative design that uses a single motor and a tunable rotary cam-train system to achieve a spectrum of fin motions running from oscillation (wavenumber < 1) to undulation (wavenumber > 1). Our platform enables thrust, lift, power, and wake measurements at prescribed pitch amplitudes, frequencies, and wavenumbers. We demonstrated the platform’s oscillating and undulating capabilities via force and wake measurements in a water tank. Studies of fin wavenumber offer design insights for fish-like underwater robots, particularly those with stingray-inspired designs. 
    more » « less